
Discovering and Analyzing Deviant
Communities:

Methods and Experiments

Napoleon C. Paxton*, Dae-il Jang**, Ira S. Moskowitz*, Gail-Joon Ahn**, Stephen Russell* and Myong Kang*

*Information Technology Division, Naval Research Laboratory, Washington, DC
**School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, AZ

Abstract—Botnets continue to threaten the security land-
scape of computer networks worldwide. This is due in part
to the time lag present between discovery of botnet traffic
and identification of actionable intelligence derived from the
traffic analysis. In this article we present a novel method to
fill such a gap by segmenting botnet traffic into communities
and identifying the category of each community member.
This information can be used to identify attack members
(bot nodes), command and control members (Command and
Control nodes), botnet controller members (botmaster nodes),
and victim members (victim nodes). All of which can be used
immediately in forensics or in defense of future attacks.

The true novelty of our approach is the segmentation of
the malicous network data into relational communities and
not just spacially based clusters. The relational nature of
the communities allows us to discover the community roles
without a deep analysis of the entire network. We discuss the
feasibility and practicality of our method through experiments
with real-world botnet traffic. Our experimental results show
a high detection rate with a low false positive rate, which gives
encouragement that our approach can be a valuable addition
to a defense in depth strategy.

I. INTRODUCTION

There has been a significant amount of research devoted
to discovering botnet traffic within computer networks, but
an equally important area of research is the analysis of
the data once it has been discovered. Security analysts
in charge of decyphering information gathered after a
botnet attack always begin at a disadvantage due to the
everchanging landscape of botnet administration and the
custom and decentralized methods used to analyze the
data. Because of this, many botnets such as Mariposa (7
months), Kelihos (8 months), and Rustock (5 years), can
continue to operate for a significant amount of time after
an attack has been discovered, while waiting for actionable
information gathered from current analysis techniques [5].
This "wait" is significant because current analysis methods
have to decipher the commands used to administer the
botnets. Experts agree that this is time consuming and
non-trivial even for experienced and skilled analysts [13],
[4]. A preliminary analysis that will allow analysts to take
immediate steps, (such as identifying and blocking key
actors in the botnet), can lessen the effects of continued

operations until a more detailed analysis can be completed.
Malicious botnets, which are networks of compromised

machines, continue to be among the top threats found on
the Internet [16]. Attacks performed using botnets include:
Distributed Denial of Service (DDoS), Identity Theft, Click
Fraud, Phishing, Spam, and so on. Each type of attack
can cause significant harm to their victim and consume
considerable bandwidth of the networks they operate in.
For example, in the case of spam, a recent security report
from Trustwave found that 75.2% of all inbound emails
are considered spam sent by botnets [12]. Additionally, ten
percent of those spam emails contain malicious content,
which will infect vulnerable machines of users who click
on the email’s embedded link.

Defense In Depth is a strategy used by nearly every
network security professional to defend against threats on
the Internet. This strategy involves multiple layers of pro-
tective solutions such as anti-virus, anti-spyware, firewalls,
and intrusion detection/prevention systems. This strategy
also includes layers of analysis methods which generally
consist of custom tools that analyze malware and network
traffic. Each layer works in concert to defend systems.
Information discovered from the analysis layers are turned
into signatures that are fed into the protection layers.
Current botnet analysis techniques, which are based on
the custom tools, are effective in discovering fine-grained
details about botnets. However, due to the amount of time
that takes place between protection layers and analysis
layers, an additional analysis layer is still needed to reduce
the effects of the botnet while the more conclusive analysis
takes place.

Methods for finding communities have been studied ex-
tensively in a variety of networks including the Internet [6].
In each method, all networks are represented generically as
graphs composed of vertices (nodes) and edges (links). The
concept of communities does not have a widely accepted
definition. For the purpose of this article communities are
described as nodes in the network that communicate with
each other through links more than they do with any
other nodes in the same network. In previous research,
discovering the communities and the relationships between

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302 Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number

1. REPORT DATE
OCT 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
Discovering and Analyzing Deviant Communities: Methods and
Experiments

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory ,Information Technology
Division,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
10th IEEE International Conference on Collaborative Computing, 22-25 Oct 2014, Miami, FL.

14. ABSTRACT
Botnets continue to threaten the security landscape of computer networks worldwide. This is due in part to
the time lag present between discovery of botnet traffic and identification of actionable intelligence derived
from the traffic analysis. In this article we present a novel method to fill such a gap by segmenting botnet
traffic into communities and identifying the category of each community member. This information can be
used to identify attack members (bot nodes), command and control members (Command and Control
nodes), botnet controller members (botmaster nodes) and victim members (victim nodes). All of which can
be used immediately in forensics or in defense of future attacks. The true novelty of our approach is the
segmentation of the malicous network data into relational communities and not just spacially based
clusters. The relational nature of the communities allows us to discover the community roles without a
deep analysis of the entire network. We discuss the feasibility and practicality of our method through
experiments with real-world botnet traffic. Our experimental results show a high detection rate with a low
false positive rate, which gives encouragement that our approach can be a valuable addition to a defense in
depth strategy.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a REPORT
unclassified

b ABSTRACT
unclassified

c THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

their nodes has revealed key facts about the purpose of the
community creation. In this article we investigate how this
method can be further extended to perform botnet analysis.

This article is organized as follows: the overview of
botnet analysis approaches is described in Section II. Sec-
tion III discuss our botnet community analysis model which
is based on k-clique constructs. In Section IV, we discuss
our tool and evaluation results on both IRC and HTTP
botnets. To evaluate the effectiveness of our approach, we
compare information discovered in our analysis with the
results of a manual analysis of the same botnets. Our com-
parison shows community analysis methods can accurately
uncover preliminary information with a low false positive
rate. This information can be eventually used to reduce the
time between discovery of botnet activity and identification
of actionable intelligence. The future directions of our
approach are elaborated in Section V. Section VI concludes
the paper.

II. CURRENT BOTNET ANALYSIS METHODS

Botnets have the ability to conduct attacks or other
malicious activities within minutes or even seconds. Current
botnet analysis techniques designed to discover enough
information to slow down or stop botnets are effective once
the semantics of the data captured from the botnet can
be discovered [11]. Unfortunately, the deciphering of the
data normally takes days, and in some cases months, to
complete.

Signature Based Analysis. Most botnet analysis tech-
niques today require a manual pre-processing step, which
involves reviewing the normal format of the command
and control protocol being used, and comparing it with
the format of the actual command structure found in the
botnet data. This is a mandatory step because many botnet
administrators modify their command and control protocols
to evade detection or monitoring. As mentioned before,
this step can be very time consuming depending on the
sophistication of the protocol modification and the skill
level of the analyst [4], [5]. The products of this type of
analysis are signatures which are used to power mecha-
nisms such as anti-virus programs, firewalls, and blacklists.
Signatures block botnet traffic based on a defined ruleset.
Again, the problem with this approach is the length of time
involved in the signature discovery. In normal cases botnet
administrators slightly change their malware to avoid a
detection engine, this simple change places the requirement
on the analyst to repeat the tedious signature based process
each time a change occurs.

Anomaly Based Analysis. Anomaly based solutions
such as sandnets perform their analysis based on patterns
discovered during execution of the data [14]. Existing
approaches such as botsniffer [9] and bothunter [8] require
a malicious activity response module for each type of botnet
action that is to be monitored. Today botnets have become
sophisticated in disguising their activities so that it could
make defining malicious activity response modules both

difficult and impractical. Since our approach is based on
physical structure and communication patterns, we do not
require this step for botnet analysis.

Sinkholing. Sinkholing is the current method of choice
for botnet analysis and defense [3]. In this approach, the
analyst deceives bots into taking orders from the analyst
instead of their normal command and control servers. Once
this is done the analyst receives all traffic packets passed
from the bots to the botnet. There are several drawbacks to
sinkholing and shutting down botnets. The biggest issue is
the complexity and time involved in conducting a sinkhol-
ing campaign. Normally, sinkholing involves a coordinated
effort from the analyst, ISPs, and law enforcement officials.
Another major concern is after a botnet is sinkholed, there
is only a small window to conduct an analysis of the
entire botnet. This is because the command and control
server and the master of the botnet are no longer controlled
by the deviant users whom the botnet used to belong to.
Shutting down the botnet also has its drawbacks. Although
the loss of the botnet is a setback for the administrators and
botmasters that controlled the botnet since the perpetrators
behind the botnet are normally not captured, they are free
to regroup and create new and more resilient botnets.

Each of these methods are useful in a defense in depth
approach over time, but new methods are needed to discover
information about botnets earlier so more immediate actions
can be taken to address the threats caused by the botnet
activity.

III. BOTNET COMMUNITY ANALYSIS

There exist several approaches in extracting and analyz-
ing communities within the network data. Early algorithms,
such as the approach by Borgatti et. al. [2] and the k-
core algorithm [15] showed how communities could be
extracted, but did not allow nodes to be part of more than
one community within a network. Networks such as botnets
do contain nodes that belong to multiple communities so
these methods could not be easily adapted for our approach.
CFinder is an algorithm that allows community members to
overlap and it is the most studied method in the literature. It
is based on k-clique percolation, which was introduced by
Palla et. al. [10]. This algorithm builds communities based
on k-cliques and has been proven effective in identifying
the semantics of many network communities such as social
networks and normal Internet traffic networks [6]. However,
this approach is not sufficient for our purposes in its native
form because it does not consider communication direction.

Attribute Selection. Analyzing botnet data using our
method is dependent on selecting attributes for two ele-
ments, (1) Discovering nodes and (2) Discovering links that
connect the nodes. Discovering these elements is dependent
on the format of the available data, but not the structure
of the command and control commands. For example, the
most common data format collected for all protocols is
packet capture data (PCAP) which is based on the packets
created by the transport layer of the TCP/IP protocol stack

2

when messages are sent back and forth over the Internet.
This means that if PCAP data is available for IRC, P2P,
HTTP, and any other botnet administration protocol it is
structured the same, the only preparation that needs to be
made before analysis is the selection for the attributes to
define the nodes and links.

Node attribute selection seeks to identify each member
of a community that sends or receives a message. We
selected IP address as our node attribute because each
node is required to have an IP address assigned to it. A
well known issue with IP addresses is that they tend to
change frequently, which makes identifying nodes uniquely
impossible when considering only the IP address. Our
current research is only concerned with discovering the
communities and the semantics of the communications be-
tween the nodes in each community. Hence, the uniqueness
of each node is not required. We leave identifying unique
nodes to future work.

Link attribute selection in our approach is concerned
with identifying identical links. Because of this, we se-
lected Payload Length as our link. Payload length meets
our requirement since periodically bot nodes in a botnet
will either receive or send an identical message. Payload
length is also readily available and useful regardless of
the readability of the payload. For instance, if the payload
messages of a botnet are encrypted, we will not be able to
understand the communication across the network without
a time consuming decryption step, but since many payload
messages in a botnet tend to have the same content, these
identical messages which are encrypted using the same
algorithm will be the same size.

Node Category Discovery. To discover information
that can aid in botnet defense, we place each node in a
category based on their actions in the communities. These
categories are: Master Node-which initiates all commands
to the botnet, Command and Control Node-which acts as a
proxy between the Master Node and the rest of the botnet,
Bot Node-which carries out commands received from the
Command and Control and returns responses periodically
or when prompted, and finally the Victim Node-which is
the target of attacks and does not send a response recorded
in our data.

A. Botnet Community Model
We select k-clique constructs that are based on Palla et.

al. [10], to build our communities. Our intuition behind
this is two-fold: (1) our community identification is local,
which means if a node or link outside of the community
were to be removed, then the local community would not
be effected. (2) It allows overlaps, which means a node can
be part of more than one community at the same time. In
clique percolation, there is a graph with nodes and links,
(of weight 1 and non-directional), which represent a means
of communication or contact without self-edges.

Definition 3.1: A clique is a set of nodes that have a
link to every other node in the set.

(a) k=2 (b) k=3 (c) k=4

Fig. 1. Example k-cliques: In order to be a k-clique each node needs
to have a connection to every other node in the clique. (a) Two fully
connected nodes (b) Three fully connected nodes (c) Four fully connected
nodes.

The k in k-clique represents the number of fully con-
nected nodes in the clique. Fig. 1 displays three cliques
with different k values. All cliques are equal to or are a
subset of a maximal clique. In addition, there can be many
cliques in a maximal clique, but a maximal clique cannot
belong to another clique. Cliques percolate into each other
by being adjacent and communities are built from adjacent
cliques. We define several terms as follows:

Definition 3.2: The largest amount of fully connected
nodes k found in a particular community is known as the
maximal clique.

Definition 3.3: Two k-cliques are adjacent if they have
k � 1 nodes in common.

Definition 3.4: A community is a set of two or more
adjacent cliques.

Note that others have relaxed the definition of adjacency
by varying k � 1 to k � i, and is dependent on the method
being used [10]. An important element captured using the
clique percolation method is community overlap.

Definition 3.5: Community overlap occurs when at
least one node is part of multiple communities.

In order to identify communities using this method we
first discover the maximal cliques in the botnet. This step
takes into account the botnet as a whole and finds the
maximal cliques built from fully connected nodes within the
botnet. Each maximal clique now represents a node which
will or will not be paired with other maximal cliques. To
identify the links between cliques we create an adjacency
matrix O with adjacent cliques i and j. In order to find all
cliques of size k that are percolating into each other and
forming communities, all values of O that are equal to or
greater than k-1 are given the value 1 in the matrix and
all other values of O are set to 0. After this process, each
value of 1 in the matrix represents a community and the
community overlap is discovered by identifying the number
of vertices shared by clique (i and j).

Once communities are discovered, we integrate direc-
tional data based on the Source and Destination IPs. This
step is straight forward and forms the basis of our analysis
by identifying how nodes communicate amongst each other.
Previous research has shown that bots make up at least
50% of the total nodes found in a botnet [9]. Using this
key metric as a threshold, we discover the category of
each node. Our node categorization algorithm performs
as follows:
1. Discovering Coordinated Activity–Identify all mes-

3

sages sent to or received by at least 50% of the nodes
in a community graph and this step terminates if a
coordinated link is not discovered or no nodes in a
current community have been previously categorized;

2a. Identifying Command and Control Nodes–Identify all
nodes sending messages to or receiving and forward-
ing messages from coordinated nodes;

2b. Discovering Victim Node–Identify all nodes that re-
ceive messages from coordinated nodes and do not
respond;

3. Discovering Master Nodes–Identify all nodes that
sends/receives non coordinated messages to the com-
mand and control nodes without receiving a coordi-
nated reply; and

4. Discovering Bot Nodes–Identify all nodes that are
part of the coordinated group that sent or received
coordinated messages.

A community graph is a set of all communities dis-
covered in a temporal window. Each community graph
represents a timestep in our botnet analysis. We have
discovered that many botnets have session intervals of less
than 10 minutes, for this reason we chose 10 minute time
intervals for each community graph. This means that all
nodes and links that are discovered within a 10 minute
increment are part of the same community graph. We also
consider adjacent community graphs to account for sessions
that span across multiple community graphs. Assuming
that we are analyzing the initial community, step 1 of
our algorithm checks each community in the graph for
discovering identical links in one direction that reaches at
least 50%. If the community does not have a coordinated
group of at least 50% we do not consider it useful for
botnet analysis. In step 2, we check to see if the discovered
coordinated links have a one to many relationship. Step 2 is
split into (a) and (b) because at this point the single node
that has been identified will be classified as a Command
and Control Node if messages are being sent and received
which is identified as Step 2a. If messages are only being
received, the node will be classified as a Victim, which
is identified in Step 2b. At this point, the command and
control nodes have been identified. Nodes that send non-
coordinated links to the command and control nodes are
identified in Step 3, and are considered bot masters because
no other node type recorded in the community will send
non- coordinated messages without receiving a coordinated
reply in the allocated time interval. Step 4, identifies the
nodes that are 50% or over of members that sent or received
a coordinated link. There has to be at least 2 nodes in this
category.

IV. BOTNET COMMUNITY ANALYSIS EVALUATION

All of the components in our analysis are implemented
on commodity hardware using Inter Core i7 and 8GB
memory through Cygwin. This is important because no
modification of the hardware is required for our method to
operate. The data collection and analysis were conducted

(a) GUI

(b) CUI

Fig. 2. Current Proof of Concept Tool: (a) Graphical Interface and (b)
Command-line

in Virtual Machines (VMs) designed to capture botnet
traffic. Our datasets consist of PCAPs from the HTTP based
BlackEnergy botnet and an unnamed IRC botnet.

Tools and Implementation. To conduct our analysis, we
created tools based on the Python and Perl programming
languages. We based our community extraction on the open
source tool, CFinder[1], to discover communities. Fig. 2
shows the proof-of-concept prototype of our graphical and
command line tools.

The front end of our tool is designed to provide options
in choosing the node.

A. Analysis of an IRC botnet
First we demonstrate our approach by analyzing network

traffic from a botnet controlled by the IRC protocol. As a
reminder, the verticies (nodes) are identified by IP address
and the edges (links) are identified by the message payload
size in bytes. Example (21B is a message of size 21 bytes).

Community Graph Analysis (IRC): Figure 3 shows
six randomly selected nodes from a community graph.
The applied directional links show that nodes (x.x.x.16,
x.x.x.17, x.x.x.18, x.x.x.19, x.x.x.10) all receive a (21B)
request (shown in dotted lines) from (node x.x.x.194). All
nodes except for node x.x.x.194 returned a (20B) response
(shown in solid lines). Following step 1 of our algorithm,
nodes x.x.x.10, x.x.x.16, x.x.x.17, x.x.x.18, and x.x.x.19 all
received and sent a message at the same time and since this
represents over 50% of the nodes found in the community
graph this qualifies as a coordinated communication event.
Based on step 2a of our algorithm, node x.x.x.194 is a

4

COMMAND AND CONTROL node because it is the node
that sent and received the coordinated message. In this
community there were no nodes that received coordinated
messages without returning a message step 2b and there
were no nodes that sent non-coordinated messages to the
command and control node step 3. All the other nodes were
part of the group that made up the coordinated nodes which
only sent and received coordinated messages. According to
step 4 of our algorithm, these nodes all belong to the BOT
node category.

Fig. 3. Sample Community of IRC Botnet in a Community Graph:
Command and control node x.x.x.194 sends a link (21B) to all bots in the
community. Bots respond to the command and control node with identical
links of (20B).

In Figure 4 we first see the (20B) and (21B) messages
sent previously step 1. Node x.x.x.194 still qualifies as a
COMMAND AND CONTROL node based on Step 2a. Node
x.x.1.19 received coordinated messages but did not return
any data, so based on Step 2b it fits in the VICTIM node
category. Next we see node x.x.x.10, which was one of the
nodes found in the bot category in the previous community
graph and sent a non-coordinated message, (181B), to the
command and control node x.x.x.194. According to Step
3 this places the node in the BOTMASTER node category.
In this new graph all the other nodes in the graph sent
a message (9B) to the node x.x.1.19, which places it in
the VICTIM category. The nodes that sent the coordinated
message represent more than 50% of the nodes in the graph
and they only sent coordinated messages so according to
Step 4 these nodes belong to the BOT category.

Manual Analysis (IRC): The IRC botnet we analyzed
followed specifications from RFC 2812 and included all
message types. Link (21B) translated to a PING message
and link (20B) translated to a PONG message. PING/PONG
messages are sent periodically to determine what nodes
are considered available within the IRC network. In Fig-
ure 4(a), we can notice that the PING links (21B) were sent
throughout the network to see what nodes were available
and the PONG links (20B) gave the reply. In Figure 4(a),
a node x.x.x.10 sent an attack command to node x.x.x.194
with the destination node set to ALL. Figure 4(b) shows
the result of the command (ALL), where each of the bots
in the botnet sent a (9B) message to the node x.x.x.19.

Summary of Overall IRC Analysis. The overall results
discovered using our botnet community overlap method
were similar to those discovered using the manual analysis.
Bots were correctly classified (99%) of the time during the

evaluation and Command and Control Nodes were fully
identified. Botmaster Nodes were identified with a (67%)
detection rate, but this result was a bit misled because 77
of those botmaster Nodes identified by manual analysis
connected to a Command and Control Node once and
did not commit any subsequent transactions. Victim Nodes
had a success rate of (87%), but attack detection had a
rate of (68%). The reason for the disparity here is many
attacks only involved one or two bots in the botnet. These
are reconnaissance attacks that are sent out before more
large-scale coordinated attacks are conducted. Currently
our approach does not capture these reconnaissance at-
tacks in the communities. Overall our analysis result was
meaningful and promising and it shows our method was
conducted nearly three days faster than the manual analysis.
Community overlap was relatively high in our study. This
is interesting because normal Internet traffic is said to have
a relatively low overlap rate.

Method Time Bots C&C botmasters Victims Attacks
Bot Com 30 min 4323 34 234 61 219
Manual 3 days 4310 34 351 70 321

TABLE I
IRC COMMUNITY METHOD RESULTS

(a) IRC Command Propagation Found in Community Graph 1

(b) IRC Command Execution Found in Community Graph 2

Fig. 4. Sample Result of Command Propagation and Attack Across
Adjacent Community Graphs: (a) Botmaster node x.x.x.10 sends a link
(181B) to command and control node x.x.x.194 to send a message to all
bots in the botnet. (b) All the bots in the botnet send a (9B) attack to
victim node x.x.x.19.

B. Analysis result of HTTP botnet
The HTTP botnet used in this article followed standard

protocol procedures in HTTP RFC 2616 [7]. Figure 5 shows
three partial communities across three community graphs
that were constructed from randomly selected nodes.

Community Graph Analysis (HTTP): Here we show
an example of our analysis across three community graphs
which are shown Figure 5. Figure 5(a) shows a segment
of a community graph where a node x.x.x.51 sent a co-
ordinated link to all the other nodes in the community.

5

(a) HTTP Bots and Command and Control Server Interactions Found in
Community Graph 1

(b) HTTP Botmaster and Command and Control Server Interactions Found
in Community Graph 2

(c) HTTP Attack Discovered From Multiple Bots to a Victim Found in
Community Graph 3

Fig. 5. Sample Result of Adjacent HTTP Botnet Community Graphs:
(a) Command and control node x.x.x.51 sends a coordinated link (279B)
to all the bot nodes in the botnet. (b) Botmaster node x.x.x.16 sends a
series of links (823B, 395B, 583B, 468B) to command and control node
x.x.x.51, which then sends a series of replies (78B, 1460B, 104B, 870B,
820B) back to the botmaster node.

Based on step 1, this qualifies as a coordinated event
since more than 50% of the nodes received a link of the
same size (279B). Based on step 2(a), node x.x.x.51 is
a COMMAND AND CONTROL node because it sent the
link. In this community graph there are no nodes that
received coordinated messages without returning a response
so step 2(b) does not apply and there were no nodes that
sent a non-coordinated link without receiving a coordinated
response, so no botmasters were discovered using step 3.
Since all nodes x.x.x.27, x.x.x.31, x.x.x.28, x.x.x.29, x.x.x.1,
and x.x.x.30 received a coordinated link (279B), these nodes
are classified as BOT nodes by step 4 of our algorithm.
Note that after all the bot nodes received a coordinated
link they returned similar, but non-identical replies. These
replies are updates and are currently used as metadata, but
not to identify the category of the nodes.

In the community graph illustrated in Figure 5(b), a new
node is discovered which sends a series of non-coordinated
links to a node x.x.x.51. The node x.x.x.51 was previously
identified as a command and control node in an adjacent
community graph. In this community graph steps 1,2 (a),
2(b), and 4 were not utilized, because no coordinated links
were observed, but since the node x.x.x.51 was already
identified in a previous graph, we were able to use its
previous state and apply step 3 which placed a new node,

x.x.x.16, in the BOTMASTER node category because it
sent non-coordinated links without receiving a coordinated
response.

In the community graph shown in Figure 5(c), nodes that
were previously identified as belonging in the bot category
also sent a coordinated message to a new node x.x.x.89.
Since the node x.x.x.89 did not respond to the coordinated
link, it is placed in the VICTIM category. Also, if the nodes
that sent the coordinated message were not previously
identified as bots, they would have been identified as bots
in this graph because of the coordinated message that was
detected.

Manual Analysis (HTTP). Manual analysis of the com-
munity graph in Figure 5(a) shows that nodes x.x.x.27,
x.x.x.31, x.x.x.28, x.x.x.29, x.x.x.1, and x.x.x.30 are bots
sending requests to a command and control node x.x.x.51
for obtaining command instructions. Figure 5(b) shows a
series of communications between a botbotmaster x.x.x.16
and a command and control server x.x.x.51. In Figure 5(c),
bot nodes x.x.x.1., x.x.x.27, x.x.x.28, x.x.x.29, and x.x.x.30
all sent an attack message to the victim node x.x.x.89. These
results also are consistent with the analysis conducted using
our community graph analysis.

Summary of Overall HTTP Analysis. The overall
results of our method compared to the manual analysis for
this botnet were nearly identical. Just like the analysis of
the IRC based botnet, bots were correctly classified (99%)
and Command and Control Nodes were fully identified. In
the case of the bots, the nodes that were not identified did
not participate in the coordinated group activity for some
reason. Since they did not perform anything malicious they
were not important from the attack analysis perspective.
Botmaster nodes were partially identified (31%) but this
result is again misled because all 9 of the botmasters that
were not discovered only connected to each other and did
not perform a malicious act. For victims we actually had 2
false positives. The manual analysis revealed that we incor-
rectly classified two botmasters as victims because multiple
bot nodes sent a link of the same size to the botmasters
within the same time interval. Finally we had a success
rate of (91%) for discovering attacks. All the attacks that we
missed were small-scale activities so they were not captured
in our community analysis. Our community overlap rate
was once again high across communities, which suggests
we may be able to leverage this attribute in future analysis
studies.

Method Time Bots C&C botmasters Victims Attacks
Bot Com 12 min 2123 5 4 45 59
Manual 2 days 2102 5 13 43 65

TABLE II
HTTP COMMUNITY ANALYSIS RESULTS

6

V. DISCUSSION

Here we discuss future directions of our approach along
with potential approaches.

Attack Reconnaissance Discovery. An issue with dis-
covering botnet communities using our method is the
possibility of not discovering all botnet transactions. For
our analysis we set the value of k to 3, which allows
us to identify all communities where at least three nodes
can communicate with each other. The communities are
not captured if it involves direct messages between two
nodes, such as botmaster to botmaster communications.
These transactions are usually used to discuss malicious
plans or send test attacks towards a target. One way to solve
this problem is to reduce the k value to 2, but this also
greatly enlarges the size of the communities discovered.
Instead of reducing the k value across the entire commu-
nity, we will experiment with conducting an analysis that
reveals all adjacent links and nodes of identified botmaster
and command and control nodes. This should reveal the
"silent" botmasters that only connect to other botmasters
and command and control nodes.

Botnet Traffic Detection. Currently our method only
applies to botnet data after an attack has been discovered
by other methods. In the future we plan to investigate
expanding our approach to further discover botnet traffic
in a set of unfiltered network data. The current state
of our algorithm will not allow us to accomplish this
goal because of the significant amount of communities
that will be created, such as the case addressed in [6].
Furthermore, at k = 3, some of the communities created
by our approach would not be related to botnet traffic.
To address this issue we plan to modify our algorithm by
adding additional conditions which are more selective for
constructing communities. One possible option is to require
the detection of homogeneous interaction between nodes
before a community is extracted. Currently we consider the
homogeneous properties of the traffic after the communities
are discovered, which initiates our node classification. The
high success rate in correctly identifying these nodes show
that the homogenous property is of significant value and
has a reasonable chance to succeed in differentiating botnet
communities from other communities on the Internet.

VI. CONCLUSION

In this article we introduced a new approach for ana-
lyzing botnet traffic. In particular, we made two notable
contributions:

Our first contribution was a novel algorithm for botnet
analysis based on an extension of k-clique community
finding constructs. By discovering communities in botnets,
events such as attacks are systematically identified without
having to conduct a time consuming, manual analysis of
the commands used to administer the botnets.

Our second contribution was a method to identify the
category that each node belongs to within the botnet based

on their communication patterns. Discovering this infor-
mation early in the overall analysis process gives analysts
enough information to make preliminary decisions, such as
blocking attacking IPs and identifying key nodes such as
the command and control servers.

Current methods to analyze botnets require the manual
step of reverse-engineering the command and control pro-
tocol used to administer the botnet. This is a nessecary step
for a detailed analysis, but presents an opportunity for the
botnet to continue its nefarious acts during the procurement
of the process. Our approach has shown through a botnet
analysis comparison of our method, and an expert based
manual method, that our approach identifies the correct
category for each node with a high percentage rate and a
low false positive rate. Since our approach is command and
control protocol independent it can perform this analysis
without reverse-engineering the botnet administration struc-
ture. This makes our analysis much faster than the detailed
analysis, and the information provided can prevent attacks
while waiting for the more detailed analysis to complete.
These results show that our approach shows great promise
as a potential add-on-layer to a defense-in-depth network
protection strategy.

REFERENCES

[1] B. Adamcsek, G. Palla, I. J. Farkas, I. Derényi, and T. Vicsek.
Cfinder: locating cliques and overlapping modules in biological
networks. Bioinformatics, 22(8):1021–1023, 2006.

[2] S. Borgatti, M. Everett, and P. Shirey. Ls sets, lambda sets, and other
cohesive subsets. In In the Proceedings of Social Networks, 1990.

[3] D. Bradbury. Fighting botnets with sinkholes. Network Security,
2012(8):12–15, 2012.

[4] C. Y. Cho, D. Babic, E. C. R. Shin, and D. Song. Inference
and analysis of formal models of botnet command and control
protocols. In Proceedings of ACM Conference on Computer and
Communications Security. ACM, 2010.

[5] D. Dittrich. So you want to take over a botnet. In Proceedings of 5th
USENIX conference on Large-Scale Exploits and Emergent Threats.
USENIX, 2012.

[6] E. Gregori, L. Lezini, and C. Orsini. k-clique communities in the
internet as-level topology graph. In Proceedings of the 31st Inter-
national Conference on Distributed Computing Systems Workshop,
pages 134–139. IEEE, 2011.

[7] N. W. Group. Hypertext transfer protocol request for comments.
http://www.ietf.org/rfc/rfc2616.txt, 1999.

[8] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. Bothunter:
Detecting malware infection through ids driven dialog correlation.
2007.

[9] G. Guofei, J. Zhang, and W. Lee. Botsniffer: Detecting botnet com-
mand and control channels in network traffic. In Proceedings of the
15th Annual Network and Distributed System Security Symposium.
NDSS, 2008.

[10] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the
overlapping community structure of complex networks in nature and
society. Nature, 435(7043):814–818, 2005.

[11] N. C. Paxton, G.-J. Ahn, and M. Shehab. Masterblaster: Identi-
fying influential players in botnet transactions. In 35th Annual
IEEE International Computer Software and Applications Conference
(COMPSAC). IEEE, 2011.

[12] N. J. Percoco. 2013 trustwave global security report.
In www2.trustwave.com/rs/trustwave/images/2013-Global-Security-
Report.pdf. Trustwave, 2013.

[13] D. Plohmann and E. Gerhards-Padilla. Malware and botnet analysis
methodology. In Proceedings of 4th Annual Conference on Cyber
Conflict. CyCon, 2012.

7

[14] C. Rossow, C. J. Dietrich, H. Bos, L. Cavallaro, M. v. Steen,
F. Freiling, and N. Pohlmann. Sandnet: Network traffic analysis
of malicious software. ACM, 2011.

[15] S. Seidman. Network structure and minimum degree. In In the

proceedings of Social Networks, 1983.
[16] Z. Zhao, G.-J. Ahn, and H. Hu. Examining social dynamics for

countering botnet attacks. In 54th IEEE Global Communications
Conference (GLOBECOM). IEEE, 2011.

8

